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Many applications in crystallography require the use of linear transformations

on parameters and their standard uncertainties. While the transformation of

the parameters is textbook knowledge, the transformation of the standard

uncertainties is more complicated and needs the full variance/covariance

matrix. For the transformation of second-rank tensors it is suggested that the

3� 3 matrix is re-written into a 9� 1 vector. The transformation of the

corresponding variance/covariance matrix is then straightforward and easily

implemented into computer software. This method is applied in the

transformation of anisotropic displacement parameters, the calculation of

equivalent isotropic displacement parameters, the comparison of refinements in

different space-group settings and the calculation of standard uncertainties of

eigenvalues.

1. Notation
� denotes the reciprocal space or dual space.

Bold capital letters define matrices.

~�� define the vec operator or simply a vector which is repre-

sented as a column matrix.
�1 denotes the inverse of a matrix, t the transpose of a matrix,

and their combination �t denotes the transpose of the inverse

of a matrix.

U� is the dimensionless mean-square displacement tensor, U�ij

are its components. The corresponding temperature factor

parameters are defined as1

T ¼ exp �2�2 U�11h2
þ U�22k2

þ U�33l2
��

þ 2U�12hkþ 2U�13hl þ 2U�23kl
��
:

U is the displacement tensor defined with respect to the

reciprocal-lattice basis ða�1; a�2; a�3Þ. Uij are its components.

The corresponding temperature-factor parameters are defined

as2

T ¼ exp �2�2 U11h2ða�1Þ2 þ U22k2ða�2Þ2 þ U33l2ða�3Þ2
��

þ 2U12hka�1a�2 þ 2U13hla�1a�3 þ 2U23kla�2a�3
��
:

VarðVÞ is the variance of V.

CovðV;WÞ is the covariance of V;W.

� is the Kronecker product [see equation (29)].

2. Introduction

Second-rank tensors are a very useful concept in crystal-

lography (Sands, 1995; Lovett, 1999). Probably the most often

employed application are the (harmonic) anisotropic displa-

cement parameters in crystal structure refinement. Other

important applications are in the description of physical

properties, e.g. thermal expansion, electrical conductivity etc.

Linear transformations on second-rank tensors can easily

be applied using matrix operations. Many crystallographic

programs (PLATON, ORTEP etc.) have implemented

routines to perform this. Less trivial is the application of linear

operations to the standard uncertainties. To do this correctly

the variance/covariance matrix is necessary, which is unfor-

tunately not available in many output files (most prominent

the CIF format). Additionally there is no generally applicable

software available for this purpose. This prompted us to

develop such a procedure. Nowadays, linear algebra is well

available directly in programming languages or mathematical

libraries (LAPACK etc.) via whole array assignments and

operations. The matrix operations are then easily transferred

into software.

Most calculations in crystal physics are performed in a

Cartesian system (Haussühl, 2007). Also, rigid-body analysis

based on a TLS model commonly uses Cartesian axes

(Schomaker & Trueblood, 1998). After the structure refine-

ment in the crystal system the parameters must first be

transformed to the Cartesian system with a linear transfor-

mation.

In the least-squares refinement of a crystal structure a

similar situation occurs: depending on the space-group setting,

different lattice parameters must be used. These are related by

1 U� = �=ð2�2Þ (Grosse-Kunstleve & Adams, 2002; Giacovazzo, 2002). In the
input for the ORTEP-III software these displacement parameters are called
type 10.
2 Uij = U�ija�ia�j. In the input for the ORTEP-III software these displacement
parameters are called type 8.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pc5002&bbid=BB29


linear transformations. Feast et al. (2009)

argue that a setting with an oblique angle

increases the correlation between para-

meters and difficulties can arise during

the refinement. Taking the variance/covariance matrix into

account in the linear transformation, the results of the

refinement in the transformed setting can be compared with

the transformed results.

3. Linear transformations of coordinates and their
standard uncertainties

Let L be a linear operation in the crystal coordinate system

and ~vv the coordinate vector of an atom on a general position.

Then, ~vv
0

= L~vv is the new coordinate vector. If E is the corre-

sponding 3� 3 variance/covariance matrix of the coordinate

vector ~vv (Table 1), E0 is the variance/covariance matrix of ~vv
0
. E0

is calculated by the application of L [see also equation (23) in

x11.1],

3�3
E0 ¼

3�3
L

3�3
E

3�3
L0 : ð1Þ

4. Linear transformations of ADPs and their standard
uncertainties

Let L be a linear operation in the crystal coordinate system

and U� be a symmetric tensor representing the anisotropic

displacement parameters (ADPs) of an atom on a general

position. From the nine components in U� the corresponding

9� 9 variance/covariance matrix F� can be constructed (see

x11.2). Only 21 elements (6 variances and 15 covariances) of

this 9� 9 matrix are independent (Table 2). U�0, the result of

the application of the linear transformation L on U�, is

calculated by [see also equation (23) in x11.1]

3�3
U�0 ¼

3�3
L

3�3
U�

3�3
Lt : ð2Þ

Alternatively, the vec operator can be used [see also equation

(30) in x11.2],

9�1

~U�0U�0 ¼
9�9
ðL� LÞ

9�1

~U�U�: ð3Þ

From (2) and (3) the corresponding variance/covariance

matrix is calculated as follows,

9�9

F� ~U�U�0 ¼
9�9

ðL� LÞ
9�9

F� ~U�U�
9�9

ðL� LÞt : ð4Þ

The standard uncertainty of each component of the ~U�U� vector

can then easily be extracted from the square root of the

diagonal elements of the variance/covariance matrix F�.

A symmetry operation is a linear operation without the

change of the basis. In this case equations (2), (3) and (4) are

also valid on the tensors U and F ~UU .

5. Constrained refinement

When an atom is on a special position, the site symmetry

implies constraints on some of the parameters (Prince et al.,

2004). In the most simple case the parameter is constrained to

a certain value, e.g. some Uij must be constrained to zero. In

other cases two parameters are dependent on each other, e.g.

U12 might be dependent on U11. The latter case is difficult to

detect in the CIF file because both parameters have standard

uncertainties there. It is consequently not possible to recog-

nize from the presence or absence of standard uncertainties

whether a parameter was refined freely or constrained.

While an anisotropically refined atom on a general position

has six ADPs and a 9� 9 variance/covariance matrix F�

(Table 2), constrained atoms have less than six independent

ADPs and a smaller variance/covariance matrix (Table 3). It is

not possible to apply a linear transformation on such a smaller

variance/covariance matrix.

By definition, the correlation matrix only contains the

refined parameters. An example is the :mat file written by

the SHELXL software (Sheldrick, 2008). In the case of

constrained atoms, the correlation matrix is incomplete

concerning the coordinate vector and the ADP tensor: the

constrained parameters are missing.3 The :mat file is thus

different from the CIF file, which contains all parameters.

Because our method only works with the 9� 9 variance/

covariance matrix of the ADPs, we have to construct the

matrix from the CIF file. From the parameters in the CIF file

the site symmetry can be derived and thus the dependency
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Table 1
A 3� 3 variance/covariance matrix of the
coordinates.

ðx; yÞ is read as Covðx; yÞ and the following proper-
ties hold: Covðx; xÞ = VarðxÞ;Covðx; yÞ = Covðy; xÞ.
Values printed in bold are the six independent
parameters of the matrix.

ðx; xÞ ðx; yÞ ðy; zÞ

ðy; xÞ ðy; yÞ ðy; zÞ

ðz; xÞ ðz; yÞ ðz; zÞ

2
4

3
5

Table 2
A 9� 9 variance/covariance matrix of U�ij of an atom on a general position.

(11, 12) is read as Cov(U�11;U�12) and the following properties hold: CovðU�ij;U�ijÞ = VarðU�ijÞ,
Cov(U�ij;U�kl) = Cov(U�kl;U�ij). Values printed in bold are the 21 independent parameters of the
matrix.

ð11; 11Þ ð11; 12Þ ð11; 13Þ ð11; 12Þ ð11; 22Þ ð11; 23Þ ð11; 13Þ ð11; 23Þ ð11; 33Þ
ð12; 11Þ ð12; 12Þ ð12; 13Þ ð12; 12Þ ð12; 22Þ ð12; 23Þ ð12; 13Þ ð12; 23Þ ð12; 33Þ

ð13; 11Þ ð13; 12Þ ð13; 13Þ ð13; 12Þ ð13; 22Þ ð13; 23Þ ð13; 13Þ ð13; 23Þ ð13; 33Þ

ð12; 11Þ ð12; 12Þ ð12; 13Þ ð12; 12Þ ð12; 22Þ ð12; 23Þ ð12; 13Þ ð12; 23Þ ð12; 33Þ

ð22; 11Þ ð22; 12Þ ð22; 13Þ ð22; 12Þ ð22; 22Þ ð22; 23Þ ð22; 13Þ ð22; 23Þ ð22; 33Þ

ð23; 11Þ ð23; 12Þ ð23; 13Þ ð23; 12Þ ð23; 22Þ ð23; 23Þ ð23; 13Þ ð23; 23Þ ð23; 33Þ

ð13; 11Þ ð13; 12Þ ð13; 13Þ ð13; 12Þ ð13; 22Þ ð13; 23Þ ð13; 13Þ ð13; 23Þ ð13; 33Þ

ð23; 11Þ ð23; 12Þ ð23; 13Þ ð23; 12Þ ð23; 22Þ ð23; 23Þ ð23; 13Þ ð23; 23Þ ð23; 33Þ

ð33; 11Þ ð33; 12Þ ð33; 13Þ ð33; 12Þ ð33; 22Þ ð33; 23Þ ð33; 13Þ ð33; 23Þ ð33; 33Þ

2
6666666666664

3
7777777777775

3 It would indeed be helpful if the least-squares software would additionally
store refinement restrictions into a file.



between parameters. From the :mat file we can then extract

the variances and covariances.

The effect of the site symmetry on the coordinates can be

found by solving the equation

S~xx ¼ ~xx; ð5Þ

where S is the symmetry operation (i.e. a linear transforma-

tion) which leaves the coordinates unchanged and ~xx the vector

coordinate. A similar equation is used for the ADPs (it is not

necessary to operate on U� as there is no change of basis

during a symmetry operation),

SUSt
¼ U: ð6Þ

For the variance/covariance matrix, equations (5) and (6) are

not sufficient to derive the missing elements (Table 3). But

from the equalities found for the coordinates and ADPs we

are able to complete these missing elements.

In the simple case when the parameter is constrained to a

certain value, its standard uncertainty and its variance are zero

and its covariance with any parameter is also zero.

The situation is more complicated if two parameters are

dependent on each other. For example, if an atom is located on

a mirror plane in space group R3m, the following constraints

are imposed by symmetry: x = �y on the coordinates and

U22 = U11, U13 = �U23 on the ADPs [e.g. atom Cl2 in

3C7H9ClO3�CHCl3 (Tafeenko et al., 2009)]. From the :mat
file written by SHELXL (Sheldrick, 2008) the four variances

of the ADPs U11, U33, U23, U12 and the corresponding

six covariances can be derived. Consequently, we have to

complete the 11 missing elements in the variances/covariances

matrix of the ADPs (see Table 3) in order to obtain the

complete F (Table 2). These 11 missing elements are not

independent and can be found using variable substitutions and

the properties of covariances,4

CovðU11;U22Þ ¼ CovðU11;U11Þ ¼ VarðU11Þ;

CovðU12;U13
Þ ¼ CovðU12;�U23

Þ ¼ �CovðU12;U23
Þ;

CovðU12;U22
Þ ¼ CovðU12;U11

Þ;

VarðU13Þ ¼ Varð�U23Þ ¼ VarðU23Þ;

CovðU13;U11
Þ ¼ Covð�U23;U11

Þ ¼ �CovðU23;U11
Þ;

CovðU13;U22Þ ¼ Covð�U23;U11Þ ¼ �CovðU23;U11Þ;

CovðU13;U23
Þ ¼ CovðU13;�U13

Þ ¼ �VarðU13
Þ;

CovðU13;U33
Þ ¼ Covð�U23;U33

Þ ¼ �CovðU23;U33
Þ;

VarðU22Þ ¼ VarðU11Þ;

CovðU22;U33
Þ ¼ CovðU11;U33

Þ;

CovðU23;U22Þ ¼ CovðU23;U11Þ: ð7Þ

The implementation is usually based on the matrix of

constraints M (Watkin, 2008). M is a p� q matrix mapping p

parameters to a reduced set of q independent parameters. The

construction of M is made by finding the relationship between

the parameters. This procedure is necessary because there is

no straightforward way to recover M purely from the corre-

lation matrix or the CIF file. For example, the constraints

U22 = U11 and U13 =�U23 give the following constraint matrix,

U11

U21

U31

U12

U22

U32

U13

U23

U33

2
6666666666664

3
7777777777775
¼

1 0 0 0

0 0 0 1

0 0 �1 0

0 0 0 1

1 0 0 0

0 0 1 0

0 0 �1 0

0 0 1 0

0 1 0 0

2
6666666666664

3
7777777777775

M

�

U11

U33

U23

U12

2
664

3
775: ð8Þ

The full 9� 9 variance/covariance matrix F and the variance/

covariance matrix with missing elements Fm (derived from the

:mat file) are related by the following equation (Watkin, 2008),

F ¼ MFmMt: ð9Þ

6. Isotropic displacement parameters

Isotropic displacement parameters are a special case of ADPs

where the magnitudes of displacement are equal in all direc-

tions. In an orthonormal (Cartesian) coordinate system the

tensor representative of the isotropic displacement parameter

is diagonal with all diagonal elements equal. This tensor has

the dimension of length2 as in the CIF file and needs to be

converted to a dimensionless tensor before applying any linear

operations (see x11).

7. Practical application 1: refinement in different
space-group settings

In the triclinic and monoclinic crystal systems the choice of the

unit cell is not unique. Different space-group settings in the

monoclinic system normally lead to different cell parameters;

famous examples are the settings P21=n versus P21=c and C2=c
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Table 3
Example of a 9� 9 variance/covariance matrix of the ADPs of an atom
on a mirror plane: �y;�x; z.

(11, 12) is read as Cov(U11;U12) and the following properties hold:
Cov(Uij;Uij) = Var(Uij), Cov(Uij;Ukl) = Cov(Ukl;Uij). Dashed elements are
constrained covariances not present in the :mat file.

ð11; 11Þ ð11; 12Þ � � � ð11; 23Þ � � ð11; 33Þ

� ð12; 12Þ � � � ð12; 23Þ � � ð12; 33Þ

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � ð23; 23Þ � � ð23; 33Þ

� � � � � � � � �

� � � � � � � � �

� � � � � � � � ð33; 33Þ

2
6666666666664

3
7777777777775

4 CovðV;VÞ = VarðVÞ, VarðaV + bWÞ = a2VarðVÞ + b2VarðWÞ +
2ab CovðV;WÞ, CovðaV + bW, cX + dYÞ = ac CovðV;XÞ + ad CovðV;YÞ +
bc CovðW;XÞ + bd CovðW;YÞ.



versus I2=a. In some of these settings the cell angles can

become very oblique. It has been reported that refinement in

oblique cells has increased correlation between selected

parameters, potentially making the refinement unstable

(Dunitz, 1995).

The molecule methylene aziridine (Feast et al., 2009) can be

described in space group P21=n with cell parameters a =

13.8593 (3), b = 10.5242 (2), c = 14.8044 (4) Å, � = 92.0014 (7)�

or space group P21=c with cell parameters a = 13.8594 (2), b =

10.5243 (2), c = 19.9230 (3) Å, �= 132.0439 (7)�. In the oblique

cell setting, Feast et al. (2009) highlight an increase of the

correlation between refined parameters. For our study we re-

refined the structure based on the deposited reflection data.

The asymmetric unit contains 28 non-H atoms, which have

been refined freely with ADPs. As an example we consider

here atoms C13, O14, C111 and O102. On these atoms we

demonstrate how to transform the refined coordinates, ADPs

and their covariances into different unit-cell settings.

The unit-cell transformation from P21=n to P21=c has the

transformation matrix A applied to the column vector of cell

parameters,

A ¼

1 0 0

0 �1 0

�1 0 �1

2
4

3
5: ð10Þ

Consequently, for the column vector of coordinates and

ADPs, A�t is used,

A�t
¼

1 0 �1

0 �1 0

0 0 �1

2
4

3
5: ð11Þ

The original refinement (Feast et al., 2009) had been

performed with the CRYSTALS package (Betteridge et al.,

2003). Our re-refinement was performed with SHELXL

(Sheldrick, 2008). The refined parameters obtained from

SHELXL and from Feast et al. (2009) were identical within

standard uncertainties. The result of the P21=n refinement is

given in the left-hand column of Table 4 and of the P21=c

refinement in the right-hand column. The middle column of

Table 4 shows the P21=n results transformed to the P21=c

setting using our own Python routine (see supplementary

material5). The transformation has been applied on the coor-

dinates, ADPs, eigenvalues of the ADPs, and all standard

uncertainties. The full variance/covariance matrix has been

used, as obtained from the :mat file generated by SHELXL

(Sheldrick, 2008) with the ‘MORE �1’ instruction.

Fig. 1 displays the correlation matrix of four atoms from the

P21=c refinement (left) and the P21=n refinement (right). It is

evident from the graphs that these two correlation matrices

are very different. These graphs support thus the conclusions

about correlations by Feast et al. (2009). However, from

the previous it follows that the correlation matrices can be

compared only if the relevant linear transformation is used.

The difference between the correlation matrix from the P21=c

refinement and the transformed matrix from the P21=n

refinement is shown in Fig. 2. For the four atoms shown the

maximum deviation is only 0.015. It can thus be concluded that

the refinement is independent of the unit-cell setting.

In applying the transformations and in the preparation of

Figs. 1 and 2 the correlation between different atoms has been

ignored. We also ignored the correlation between the coor-

dinates and the ADPs of the same atom. This corresponds to a

block diagonal least-squares refinement.6

8. Practical application 2: eigenvalues and eigenvectors
of ADPs

Calculation of eigenvalues and eigenvectors of second-rank

tensors is not trivial but readily available in programing

languages or mathematic software (see x11.3). To calculate the

eigenvalues of the ADPs in a non-orthogonal coordinate

system, it is necessary to use the reciprocal metric tensor G� =

G�1.

G is defined as (Dunitz, 1995, p. 227)

G ¼
a2 ab cosð�Þ ac cosð�Þ

ab cosð�Þ b2 bc cosð�Þ
ac cosð�Þ bc cosð�Þ c2

2
4

3
5: ð12Þ
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Table 4
Parameters of O14 and C13 of methylene aziridine.

Parameter Refined in P21=n

P21=c setting
transformed
from the P21=n
refinement Refined in P21=c

O14
x 0.35897 (11) 0.72706 (16) 0.72703 (16)
y 0.74314 (12) 0.25686 (12) 0.25684 (12)
z 0.63191 (11) 0.36809 (11) 0.36807 (11)
U11 0.04682 (85) 0.06219 (99) 0.06227 (99)
U22 0.02399 (70) 0.02399 (70) 0.02368 (69)
U33 0.05938 (101) 0.05938 (101) 0.05922 (101)
U23 0.00258 (63) �0.00306 (65) �0.00306 (65)
U13

�0.00735 (72) 0.04677 (90) 0.04679 (91)
U12

�0.00165 (63) �0.00165 (63) �0.00185 (63)
Eigenvalues 0.02369 (70) 0.02369 (70) 0.02341 (69)

0.04239 (61) 0.04239 (61) 0.04214 (61)
0.06476 (64) 0.06476 (64) 0.06479 (65)

C13
x 0.48537 (15) 0.85708 (21) 0.85711 (21)
y 0.13692 (23) 0.86308 (23) 0.86308 (23)
z 0.62829 (16) 0.37171 (16) 0.37174 (16)
U11 0.03135 (101) 0.04285 (116) 0.04269 (117)
U22 0.04763 (123) 0.04763 (123) 0.04765 (122)
U33 0.05264 (134) 0.05264 (134) 0.05267 (135)
U23 0.00808 (95) �0.00436 (99) �0.00457 (99)
U13

�0.00006 (91) 0.03666 (113) 0.03674 (113)
U12 0.00237 (103) 0.00237 (103) 0.00234 (103)
Eigenvalues 0.02788 (102) 0.02788 (102) 0.02731 (101)

0.05015 (89) 0.05015 (89) 0.05031 (90)
0.05370 (91) 0.05370 (91) 0.05370 (91)

5 Results of the P21=n refinement which are discussed in this paper are
available from the IUCr electronic archives (Reference: PC5002). Services for
accessing these data are described at the back of the journal.
6 The situation might be different in the case of a full matrix refinement. Still,
there is strong evidence for the same behavior. Additionally, weighting
schemes might introduce numerical problems.



The variance/covariance matrix F ~�� of the eigenvalues of a

second-rank tensor can be calculated as

F ~�� ¼ Qt
� ðG�QÞ�1

� �
F� ~U�U�

Qt
� ðG�QÞ�1

� �t
; ð13Þ

where Q is the matrix of the eigenvectors (see also x11.3).

Because G� = G�1, this can be simplified to

F ~�� ¼ Qt
� ðQ�1GÞ

� �
F� ~U�U�

Q� ðQ�tGÞ½ 	: ð14Þ

The standard uncertainties of the eigenvalues � can be

obtained from the square root of the diagonal terms of the F ~��

matrix. As an example, the eigenvalues and their standard

uncertainties of the ADPs of atoms O14 and C13 from Feast et

al. (2009) are shown in Table 4.

9. Practical application 3: normal coordinate analysis

Normal coordinate analysis of crystal structures measured at

multiple temperatures can be performed with the NKA soft-

ware (Bürgi & Capelli, 2000; Capelli et al., 2000). The input for

this software must be in 1 (C1) symmetry. If a molecule is on a

special position, the coordinates, the ADPs and their standard

uncertainties have to be expanded to 1 (C1) symmetry (Smeets

et al., 2011). The correct symmetry is then introduced later by

the choice of appropriate local coordinate systems for the

atoms.

The Python program (see supplementary material) will

perform this expansion to 1 (C1) symmetry using the site

symmetry and the CIF and :mat files from SHELXL as input.

One result of the normal coordinate analysis is the " tensor,

which is a temperature-independent term. " is a symmetric

second-rank tensor and thus analogous to an ADP tensor. The

standard uncertainties of the eigenvalues of the " tensor can

again be calculated using equation (13). As in the case of

ADPs, the " tensor must be positive definite to be physically

meaningful. The calculation of the eigenvalues and their

standard uncertainties is thus very useful for assessing the

quality of the analysis. As the " tensor is symmetric and

expressed in a Cartesian coordinate system, the matrix of the

eigenvectors Q is orthogonal (Q�1 = Qt) and the metric tensor

is the identity matrix. From equation (13) we find

F ~�� ¼ Qt
� ðG�QÞ�1

� �
F~"" Qt

� ðG�QÞ�1
� �t

;

F ~�� ¼ ðQ
t
�Qt
ÞF~"" ðQ�QÞ:

ð15Þ

Table 5 shows the " tensors of atoms Cu, N and C in tris-

(ethylenediamine)copper(II) sulfate (Smeets et al., 2011).

10. Practical application 4: equivalent isotropic ADPs

Equivalent isotropic ADPs Uequiv should be reported with

their standard uncertainties (Trueblood et al., 1996). The

calculation of these standard uncertainties is not straight-

forward, because it can involve the transformation to an

orthogonal coordinate system (Fischer & Tillmanns, 1988).

Therefore, in many instances approximations are used for the

calculation (Schomaker & Marsh, 1983; Watkin, 2000).

Uequiv is the arithmetic average of the ADPs in the Cartesian

coordinate system,
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Figure 1
Correlation matrix from SHELXL using color coding. Correlation
between parameters of different atoms are not reported. (a) Methylene
aziridine refined in space group P21=c. (b) Methylene aziridine refined in
space group P21=n.

Figure 2
Difference between the correlations of parameters in the P21=n and the
P21=c refinement. The correlations of the P21=n refinement have been
transformed to the P21=c setting. The maximum deviation is 0.015.



Uequiv ¼
1

3

�
U11

cart þ U22
cart þ U33

cart

�
: ð16Þ

The ADPs expressed in the Cartesian coordinate system are

calculated from the U� tensor using an orthogonalization

matrix (Dunitz, 1995, p. 237),

a b cos � c cos �
0 b sin � ½cðcos �� cos� cos �Þ	=sin �
0 0 cv=sin �

2
4

3
5; ð17Þ

with v = abcð1 � cos2 � � cos2 � � cos2 � +

2 cos� cos� cos �Þ1=2.

The orthogonalization matrix represents a linear transfor-

mation. This means that the orthogonalization matrix can also

be applied on the variance/covariance matrix of the ADPs

using equation (3). The variance of Uequiv is then derived from

the components of the variance/covariance matrix on a

Cartesian basis,

Var Uequiv

� �
¼ Var

1

3
U11

cart þ U22
cart þ U33

cart

� �� 	

¼
1

9
Var U11

cart

� �
þ Var U22

cart

� �
þ Var U33

cart

� ��
þ 2Cov U11

cart;U22
cart

� �
þ 2Cov U11

cart;U33
cart

� �
þ 2Cov U22

cart;U33
cart

� ��
: ð18Þ

11. Mathematical background

A linear map or linear application or linear transformation is a

transformation in the Euclidean physical space that preserves

the operations of vector addition and scalar multiplication

(Zeidler, 2004, ch. 2.3). Typically, a symmetry operation and a

change of coordinate system are linear maps.

Let V;W be two vector spaces, and L : V 7!W be a linear

map between V and W. Letting W�, V� be the corresponding

dual vector spaces, we define the dual homomorphism

L� : W� 7!V�. A vector in this article is always noted as a

column matrix. Mathematicians define a vector in the dual

space as a row matrix which implies L = L� and L is pre-

multiplied or post-multiplied by a vector depending on the

vector space (Shmueli, 2001). Let ðai; . . . ; anÞ be a direct basis

of a vector space; the reciprocal basis ða�i; . . . ; a�nÞ of the dual

space is defined as a�iaj = 1 if i = j or 0 otherwise.

The components of a vector denoted by an asterisk (�) are

covariant and defined with respect to the reciprocal basis.

Also, a second-rank tensor denoted by an asterisk (�) is

defined with respect to the reciprocal basis.

Interesting dual homomorphism properties in the present

context are:

If L : V 7!W then L�1 : W 7!V:

If L : V 7!W then Lt : W� 7!V�:

If L : V 7!W then L�t : V� 7!W�:

ð19Þ

The vector space V is the direct crystallographic space; the

reciprocal crystallographic space is the vector space V�. As a

result a linear map L in the direct space is the linear map L�t in

the reciprocal space. Additionally, the components of a vector

are named contravariant in the direct space and covariant in

the reciprocal space.

Second-rank tensors may be written as square matrices.

Most second-rank tensors of physical properties are sym-

metric and can be represented by a quadric surface. They are

constructed following the relation (with C a constant) (Sands,

1995, p. 70)

~xxt T ~xx ¼ C: ð20Þ

The anisotropic displacement tensor U� is defined with respect

to a reciprocal-lattice basis (Trueblood et al., 1996). Thus, the

vector ~xx� is covariant and the tensor U� defined by this vector

is doubly contravariant,

~xx�t U� ~xx� ¼ C: ð21Þ

Variance/covariance matrices can also be described by a

quadric surface and their representing tensors are doubly

contravariant.

11.1. Linear maps on doubly contravariant symmetric tensors

Let ~xx be a vector of vector space V with respect to a direct

basis. ~xx0 is the result of the application of a linear map L on ~xx.

Using matrices, the equation is

~xx0 ¼ L~xx: ð22Þ

The application of the same linear map L on a doubly

contravariant tensor T� is

T�0 ¼ LT�Lt: ð23Þ

Proof. Let T� be a doubly contravariant tensor representing

a quadratic equation defined with respect to a reciprocal basis.

The basis is not necessarily orthogonal:

~xx�t T� ~xx� ¼ C: ð24Þ

Let ~xx� and ~xx�0 be two vectors defined with respect to a reci-

procal basis ða1�; . . . ; an�Þ. ~xx�0 is the result of the application of

a linear map L� on ~xx�. Let ~xx and ~xx0 be two vectors defined with
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Table 5
" tensor components and eigenvalues (Å2) in tris(ethylenediamine)copper(II) sulfate (Smeets et al., 2011).

Components Eigenvalues

"11 "22 "33 "12 "13 "23 �1 �2 �3

"(Cu) 0.0041 (2) 0.0041 (2) 0.0016 (3) 0 0 0 0.00408 (19) 0.00407 (19) 0.0016 (3)
"(N) 0.0302 (2) 0.0058 (3) 0.0117 (3) �0.0009 (2) �0.0012 (2) 0.0037 (2) 0.03038 (18) 0.0133 (3) 0.0040 (3)
"(C) 0.0101 (3) 0.0033 (4) 0.0135 (5) 0.0001 (3) �0.0038 (3) 0.0013 (4) 0.0160 (6) 0.0077 (3) 0.0030 (5)



respect to the corresponding direct basis ða1; . . . ; anÞ. a�iaj = 1

if i = j or 0 otherwise. ~xx0 is the result of the application of a

linear map L on ~xx. Using the definition and properties of dual

space [equation (19)] we obtain

~xx �0 ¼ L� ~xx �

~xx �0 ¼ L�t ~xx � dual-space property

~xx � ¼ Lt ~xx �0:

ð25Þ

Finally, by injecting (25) into (24) we obtain

~xx �t T� ~xx � ¼ C;

ðLt ~xx �0Þt T� ðLt ~xx �0Þ ¼ C;

~xx �0tðLT�Lt
Þ~xx �0 ¼ C:

ð26Þ

11.2. Vectorization of the product of square matrices

Let a square n� n matrix B be pre-multiplied by a matrix A

and post-multiplied by a matrix C. It is a very common

operation in linear applications such as symmetry operations

on tensors,

P =

a11 � � � a1n

..

. . .
. ..

.

a1n � � � ann

2
64

3
75

A

b11 � � � b1n

..

. . .
. ..

.

b1n � � � bnn

2
64

3
75

B

c11 � � � c1n

..

. . .
. ..

.

c1n � � � cnn

2
64

3
75

C

.

ð27Þ

We define ~�� as the vec operator (Henderson & Searle, 1981). P

and B are re-written as a vector by stacking all the columns on

top of each other (Soler & van Gelder, 1991). The first column

is on top of the second one and so on until all the columns are

stacked. The resulting vector has size n2,

~BB ¼

b11

..

.

bn1

�

b1i

..

.

bni

�

b1n

..

.

bnn

2
66666666666666666664

3
77777777777777777775

:

The equivalent vector operation of equation (27) is written

~PP ¼
n2�n2

D
n2�1

~BB : ð28Þ

The D matrix is constructed from matrices A and C using the

Kronecker product. The Kronecker product, denoted by �, is

an operation on two matrices of arbitrary size resulting in a

block matrix.

If A is an m� n matrix and C is a p� q matrix, then the

Kronecker product D = A� C is an mp� nq block matrix and

is constructed as follows (Horn & Johnson, 1991; Roth, 1934),

mp�nq
D ¼

m�n
A �

p�q
C

¼

a11c11 � � � a11c1q � � � a1nc11 � � � a1nc1q

a11c21 � � � a11c2q � � � a1nc21 � � � a1nc2q

..

. . .
. ..

. ..
. . .

. ..
.

a11cp1 � � � a11cpq � � � a1ncp1 � � � a1ncpq

..

. ..
. . .

. ..
. ..

.

am1c11 � � � am1c1q � � � amnc11 � � � amnc1q

am1c21 � � � am1c2q � � � amnc21 � � � amnc2q

..

. . .
. ..

. ..
. . .

. ..
.

am1cp1 � � � am1cpq � � � amncp1 � � � amncpq

2
666666666666666666664

3
777777777777777777775

¼

a11C � � � a1nC

..

. ..
.

am1C � � � amnC

2
664

3
775: ð29Þ

Finally, the equivalent vector operation of equation (27) is

written (Petersen & Pedersen, 2008; Horn & Johnson, 1991)

~PP ¼
n2�n2

ðCt
�AÞ

n2�1

~BB : ð30Þ

The variance/covariance matrix of a vector is usually repre-

sented by ‘extending’ the vector into a second-rank tensor.

The construction of a variance/covariance matrix of a two-

dimensional matrix is not trivial. The difficulty is in which

order the indices of the resulting variance/covariance matrix

are sorted. If the indices are ordered randomly, the linear map

L [equation (26)] is no longer valid for the variance/covariance

matrix.

This difficulty in the construction of the variance/covariance

matrix can be circumvented by re-writing the initial two-

dimensional matrix into a vector (Soler & van Gelder, 1991).

Any linear application on the vector is valid on the corre-

sponding variance/covariance matrix F using equation (26).

11.3. Eigenvalues of second-rank tensors and their standard
uncertainties

In a non-orthogonal coordinate system eigenvalue decom-

position cannot be performed without a metric tensor (Sands,

1995, p. 72). In this case the generalized eigenvalue problem is

to find a vector ~vv that obeys T~vv = kG~vv, where T is the tensor of

the initial ADPs. Depending in which space T is represented,

G is the metric tensor or reciprocal metric tensor.7 k is a

diagonal matrix containing the eigenvalues. The eigenvalues

are then obtained by solving the equation detðT� kGÞ = 0 (in

an orthonormal coordinate system the metric tensor G is

substituted by the identity matrix).

Using matrix notation, the following equality holds,
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7 In the Python programming language only the scipy extension provides the
scipy:linalg:eig function which accepts the use of a metric tensor. From the
numpy extension, numpy:linalg:eig is not suitable (see supplementary
material).



T ¼ GQkQ�1: ð31Þ

By expressing k as a function of T and then applying the vec

operator [see equation (30)], we obtain

k ¼ ðGQÞ�1TQ;

~�� ¼ Qt
� ðGQÞ�1

� �
~TT: ð32Þ

Q and G are linear maps, as are Qt, Q�1 and G�1. Also, the

Kronecker product defines a linear map (Rowland, 2011).

Consequently, Qt
� ðGQÞ�1 is a linear map. Application of a

linear map on a doubly contravariant tensor [see equation

(23)] gives us the expression of the variance/covariance matrix

of k and thus the standard uncertainties of the eigenvalues,

F ~�� ¼ Qt
� ðGQÞ�1

� �
F~TT Qt

� ðGQÞ�1
� �t

: ð33Þ

11.4. The :mat file from SHELXL

The :mat file can be written by the SHELXL software

(Sheldrick, 2008) using the ‘MORE �1’ instruction. The first

section of this file provides the refined parameters, their values

and their standard uncertainties. The second part consists of

the correlations between the parameters given as an upper

triangular matrix. The correlation elements are written

sequentially in fixed format, ten elements per row. Thereby,

the diagonal elements equal 1 (correlation of a parameter with

itself). The variances can be derived from the standard

uncertainties � in the first part of the :mat file. The covariances

can be derived from the correlations in the second part of the

:mat file, e.g.

Covð1; 2Þ ¼ �1�2Corrð1; 2Þ: ð34Þ

12. Conclusions

We describe a method to apply a linear transformation to the

standard uncertainties using the vec operator and the

variance/covariance matrix. This method has been used to

explain the relationship between two correlation matrices

expressed in different unit-cell settings.

13. Supplementary material

The supplementary material contains a small example as a

Python script. A more complex Python script is available from

the author or on the Debroglie website (http://www.debroglie.

net/). This script reads in a CIF file and a :mat file from

SHELXL. The software flow is controlled by command-line

parameters. It is possible to expand all the structure para-

meters to P1, apply a transformation matrix or a symmetry

operation, and convert all parameters into Cartesian space.

The output is written on the terminal or into an SPF file for the

PLATON software (Spek, 2009).

We thank Roelof W. Bruggeman (Mathematisch Instituut,

Universiteit Utrecht) for his helpful advice on dual homo-

morphism, and David J. Watkin (University of Oxford) for

fruitful discussions about least-squares refinements and about

the nomenclature of ADPs.
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